Supplementary Web-page for Manuscript:

Solving a new variant of the capacitated maximal covering location problem with fuzzy coverage area using metaheuristic approaches

Soumen Atta1, Priya Ranjan Sinha Mahapatra2, Anirban Mukhopadhyay2

1Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR 6004, UFR Sciences et Techniques, Université de Nantes, IMT Atlantique, 4 Rue Alfred Kastler, Nantes 44307, France
2Department of Computer Science and Engineering, University of Kalyani, Kalyani-741235, West Bengal, India

Email addresses: soumen.atta@univ-nantes.fr;soumen.atta@ls2n.fr;priya@klyuniv.ac.in;anirban@klyuniv.ac.in

 

The instances for the fuzzy capacitated maximal covering location problem (FCMCLP) mentioned in this page are generated using the maximal covering location problem (MCLP) [1, 2] instances which are available at http://www.lac.inpe.br/~lorena/instancias.html. We have created 84 FCMCLP instances. The size of an instance is determined by the number of customers (m). Each instance of FCMCLP consists of degree of coverage matrix having size m × m, demand vector of size m × 1, and supply capacity vector having size m × 1. The obtained best solution for each of these 84 instances are shown in the following table.

Cite as: Soumen Atta, Priya Ranjan SinhaMahapatra, AnirbanMukhopadhyay. Solving a new variant of capacitated maximal covering location problem with fuzzy coverage area using metaheuristic approaches. Computers & Industrial Engineering, Elsevier, Vol. 170, Article 108315, 2022.

Click here to download all the instances as single zip file.

m k Open facility set Cov%
324 1 32 37.03
324 2 156 21 65.14
324 3 156 58 262 86.24
324 4 156 45 294 20 93.29
324 5 258 32 234 68 152 98.82
324 6 105 22 324 127 195 281 99.78
324 7 191 109 264 25 129 45 229 or,
105 168 274 211 133 28 45
100
402 1 11 28.15
402 2 39 396 56.10
402 3 179 44 159 77.25
402 4 21 44 160 339 91.78
402 5 385 21 141 263 93 96.83
402 6 13 383 158 263 184 297 99.32
402 7 3 385 109 263 189 293 136 99.93
402 8 27 383 189 303 63 117 149 263 100
402 9 20 383 105 351 182 122 137 253 1 or,
193 383 167 335 68 217 114 259 37
100
500 1 492 22.83
500 2 20 469 45.67
500 3 84 457 488 66.44
500 4 149 465 76 472 79.94
500 5 65 423 37 472 294 or,
37 423 65 473 294
88.58
500 6 20 391 90 500 294 358 92.83
500 7 122 231 19 88 360 390 500 95.80
500 8 9 440 204 127 231 350 88 401 98.24
500 9 477 10 133 89 154 451 351 298 390 99.26
500 10 20 430 99 196 304 321 468 387 218 117 99.72
500 11 56 390 100 165 261 435 428 321 242 122 477 99.85
500 12 11 390 87 274 309 333 246 315 130 154 40 477 99.98
500 13 477 429 99 268 242 285 390 368 201 10 128 356 58 or,
39 498 318 277 425 242 348 390 153 33 117 102 166
100
708 1 11 18.60
708 2 21 608 37.20
708 3 32 639 656 55.80
708 4 95 639 31 649 70.70
708 5 21 639 162 370 649 81.33
708 6 22 553 95 370 662 443 86.05
708 7 22 599 95 375 242 394 553 88.97
708 8 23 608 163 370 62 396 549 689 92.13
708 9 22 609 163 285 72 313 592 694 399 94.48
708 10 24 554 124 285 174 396 490 689 611 152 97.20
708 11 36 559 128 285 174 435 490 689 71 152 515 97.83
708 12 24 554 124 285 654 429 490 689 601 152 515 188 98.35
708 13 3 559 100 295 662 399 490 689 420 137 516 239 318 99.34
708 14 56 559 106 295 661 399 490 689 420 171 516 239 328 26 99.59
708 15 65 553 106 296 652 444 512 689 478 171 540 237 328 26 658 99.86
818 1 11 15.43
818 2 21 648 30.86
818 3 32 679 696 46.28
818 4 32 679 809 696 59.97
818 5 173 681 809 79 689 72.00
818 6 21 679 809 160 366 689 81.00
818 7 21 679 809 160 366 689 415 85.61
818 8 22 594 809 160 366 703 415 482 89.05
818 9 22 639 809 160 366 238 415 447 593 92.15
818 10 73 44 782 160 362 237 415 295 594 450 93.35
818 11 21 641 782 156 328 301 415 247 593 451 702 94.82
818 12 12 649 761 161 316 247 417 452 667 618 72 783 95.98
818 13 22 662 809 156 327 290 415 615 580 492 238 808 626 97.11
818 14 11 593 809 156 318 175 415 485 551 640 686 793 555 281 98.80
818 15 11 593 809 146 361 184 415 485 551 640 686 793 555 296 92 99.57
700 1 94 17.01
700 2 28 583 34.02
700 3 2 642 471 51.03
700 4 14 493 397 270 68.04
700 5 399 156 512 451 561 83.36
700 6 561 563 14 661 406 451 87.44
700 7 634 307 489 14 454 584 406 89.54
700 8 236 260 268 451 355 406 661 584 91.69
700 9 234 561 584 97 354 296 661 611 697 93.21
700 10 634 572 141 561 296 355 563 406 661 657 94.07
700 11 15 270 296 355 563 661 582 561 618 212 406 94.60
700 12 94 96 112 141 296 355 563 406 661 540 561 665 95.36
900 1 11 13.18
900 2 60 249 26.35
900 3 1 317 855 39.53
900 4 40 358 851 190 52.70
900 5 7 413 810 167 843 65.88
900 6 15 366 893 179 829 421 79.05
900 7 11 249 843 194 832 349 133 92.22
900 8 350 87 810 778 174 438 133 732 97.54
900 9 608 847 882 151 815 451 594 746 545 98.29
900 10 473 196 204 217 732 778 722 360 421 737 98.24
900 11 6 558 590 324 523 350 121 732 594 747 772 98.55
900 12 12 704 133 53 815 558 161 231 438 763 23 114 98.84
900 13 278 589 594 388 778 445 746 666 158 16 732 520 866 98.86

References:
[1] Lorena, L. A., & Pereira, M. A. (2002). A Lagrangean/surrogate heuristic for the maximal covering location problem using Hillman's edition. International Journal of Industrial Engineering, 9, 57-67.
[2] Atta, S., Mahapatra, P. R. S., & Mukhopadhyay, A. (2018). Solving maximal covering location problem using genetic algorithm with local refinement. Soft Computing, 22(12), 3891-3906.

This page is maintained by Dr. Soumen Atta, Ph.D..
This page was created on February 29, 2020.