Supplementary Web-page for Manuscript:

Multiple allocation p-hub location problem for content placement in VoD services: a differential evolution based approach

Soumen Atta1, Goutam Sen2

1Indian Institute of Information Technology (IIIT) Vadodara, Gandhinagar Campus, Sector 28, Gandhinagar, Gujarat-382028, India
E-mail: soumen_atta@iiitvadodara.ac.in (Corresponding author)
2Industrial and Systems Engineering, Indian Institute of Technology (IIT) Kharagpur, Kharagpur-721302, West Bengal, India
E-mail: gsen@iem.iitkgp.ernet.in

The instances for the multiple allocation p-hub location problem (MApHLP) mentioned in this page are generated from the real world movie data set known as MovieLens 100K data set (Harper and Konstan, 2016) available at https://grouplens.org/datasets/movielens/100k/. Twenty-eight different size instances are generated for MApHLP. All the instances are given in the table shown below where n, f, p and α denote the number of users, number of files, number of hubs and discount factor per unit inter-hub flow respectively. Each instance consists of the query matrix (Q) and the distance matrix (D). In the table shown below, the column "Solution" denotes the locations of the hubs. For example, solution vector {3, 9, 7, 10} denotes that data segments s1, s2, s3 and s4 are located at user locations of i3, i9, i7 and i10 respectively. Each of the instances can be separately downloaded by clicking on the respective serial number (Sl. No.) of the instance.

Cite this article as follows:
Atta, S., Sen, G. Multiple allocation p-hub location problem for content placement in VoD services: a differential evolution based approach. Appl Intell 50, 1573–1589 (2020). https://doi.org/10.1007/s10489-019-01609-y.

Click here to download all the instances as a single zip file.

Sl. No. n f p α Solution Cost

1

10

 100

 5

 0.2

 1     4     5     8     6

 534821.739

2

10

 100

 5

 0.4

 1     4     5     9     6

 886465.946

3

10

 100

 5

 0.6

 1     4     5     9     6

 1225689.184

4

10

 100

 5

 0.8

 1     3     5     9     6

 1545829.321

5

20

 100

 5

 0.2

 20     10     1     13     19

 1174751.690

6

20

 100

 5

 0.4

 20     10     1     13     19

 1742999.258

7

20

 100

 5

 0.6

 20     14     1     5     19

 2270990.698

8

20

 100

 5

 0.8

 20     14     1     5     16

 2767781.887

9

30

 100

 5

 0.2

 16     1     29     18     23

 1650403.231

10

30

 100

 5

 0.4

 20     1     14     18     23

 2398318.466

11

30

 100

 5

 0.6

 20     1     14     18     23

 3116460.984

12

30

 100

 5

 0.8

 20     1     4     18     23

 3764140.155

13

40

 100

 5

 0.2

 29     32     23     1     18

 2098047.205

14

40

 100

 5

 0.4

 40     32     23     1     18

 3004050.520

15

40

 100

 5

 0.6

 40     20     23     1     18

 3843431.304

16

40

 100

 5

 0.8

 4     20     23     39     1

 4550001.077

17

50

 100

 5

 0.2

 20     1     23     18     45

 2511837.826

18

50

 100

 5

 0.4

 20     1     23     18     40

 3466266.515

19

50

 100

 5

 0.6

 42     1     23     18     40

 4328109.677

20

50

 100

 5

 0.8

 42     1     23     18     4

 5069979.230

21

100

 100

 5

 0.2

 42     100     37     59     78

 5718242.293

22

100

 100

 5

 0.4

 90     3     100     86     54

 7897318.306

23

100

 100

 5

 0.6

 71     44     100     62     68

 9353107.990

24

100

 100

 5

 0.8

 71     65     75     100     80

 10576393.705

25

150

 100

 5

 0.2

 65     100     104     47     41

 8589123.426

26

150

 100

 5

 0.4

 63     64     18     32     137

 11350864.093

27

150

 100

 5

 0.6

 53     73     54     95     105

 13410026.515

28

150

 100

 5

 0.8

 42     150     62     97     114

 15128130.805

denotes the best obtained solution.

Reference:
Harper FM, Konstan JA (2016) The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis) 5(4):19

This page was created on April 23, 2019.