Soumen Atta1, Goutam Sen2
1Indian Institute of Information Technology (IIIT) Vadodara, Gandhinagar Campus, Sector 28, Gandhinagar, Gujarat-382028, India
E-mail: soumen_atta@iiitvadodara.ac.in (Corresponding author)
2Industrial and Systems Engineering, Indian Institute of Technology (IIT) Kharagpur, Kharagpur-721302, West Bengal, India
E-mail: gsen@iem.iitkgp.ernet.in
The instances for the multiple allocation p-hub location problem (MApHLP) mentioned in this page are generated from the real world movie data set known as MovieLens 100K data set (Harper and Konstan, 2016) available at https://grouplens.org/datasets/movielens/100k/. Twenty-eight different size instances are generated for MApHLP. All the instances are given in the table shown below where n, f, p and α denote the number of users, number of files, number of hubs and discount factor per unit inter-hub flow respectively. Each instance consists of the query matrix (Q) and the distance matrix (D). In the table shown below, the column "Solution" denotes the locations of the hubs. For example, solution vector {3, 9, 7, 10} denotes that data segments s1, s2, s3 and s4 are located at user locations of i3, i9, i7 and i10 respectively. Each of the instances can be separately downloaded by clicking on the respective serial number (Sl. No.) of the instance.
Cite this article as follows:
Atta, S., Sen, G. Multiple allocation p-hub location problem for content placement in VoD services: a differential evolution based approach. Appl Intell 50, 1573–1589 (2020). https://doi.org/10.1007/s10489-019-01609-y.
Click here to download all the instances as a single zip file.
Sl. No. | n | f | p | α | Solution | Cost |
10 |
100 |
5 |
0.2 |
1 4 5 8 6 |
534821.739 |
|
10 |
100 |
5 |
0.4 |
1 4 5 9 6 |
886465.946 |
|
10 |
100 |
5 |
0.6 |
1 4 5 9 6 |
1225689.184 |
|
10 |
100 |
5 |
0.8 |
1 3 5 9 6 |
1545829.321 |
|
20 |
100 |
5 |
0.2 |
20 10 1 13 19 |
1174751.690 |
|
20 |
100 |
5 |
0.4 |
20 10 1 13 19 |
1742999.258 |
|
20 |
100 |
5 |
0.6 |
20 14 1 5 19 |
2270990.698 |
|
20 |
100 |
5 |
0.8 |
20 14 1 5 16 |
2767781.887 |
|
30 |
100 |
5 |
0.2 |
16 1 29 18 23 |
1650403.231 |
|
30 |
100 |
5 |
0.4 |
20 1 14 18 23 |
2398318.466 |
|
30 |
100 |
5 |
0.6 |
20 1 14 18 23 |
3116460.984 |
|
30 |
100 |
5 |
0.8 |
20 1 4 18 23 |
3764140.155 |
|
40 |
100 |
5 |
0.2 |
29 32 23 1 18 |
2098047.205 |
|
40 |
100 |
5 |
0.4 |
40 32 23 1 18 |
3004050.520 |
|
40 |
100 |
5 |
0.6 |
40 20 23 1 18 |
3843431.304 |
|
40 |
100 |
5 |
0.8 |
4 20 23 39 1 |
4550001.077 |
|
50 |
100 |
5 |
0.2 |
20 1 23 18 45 |
2511837.826 |
|
50 |
100 |
5 |
0.4 |
20 1 23 18 40 |
3466266.515 |
|
50 |
100 |
5 |
0.6 |
42 1 23 18 40 |
4328109.677 |
|
50 |
100 |
5 |
0.8 |
42 1 23 18 4 |
5069979.230 |
|
100 |
100 |
5 |
0.2 |
42 100 37 59 78 |
5718242.293☆ |
|
100 |
100 |
5 |
0.4 |
90 3 100 86 54 |
7897318.306☆ |
|
100 |
100 |
5 |
0.6 |
71 44 100 62 68 |
9353107.990☆ |
|
100 |
100 |
5 |
0.8 |
71 65 75 100 80 |
10576393.705☆ |
|
150 |
100 |
5 |
0.2 |
65 100 104 47 41 |
8589123.426☆ |
|
150 |
100 |
5 |
0.4 |
63 64 18 32 137 |
11350864.093☆ |
|
150 |
100 |
5 |
0.6 |
53 73 54 95 105 |
13410026.515☆ |
|
150 |
100 |
5 |
0.8 |
42 150 62 97 114 |
15128130.805☆ |
Reference:
Harper FM, Konstan JA (2016) The movielens datasets: History and context. Acm transactions on interactive intelligent systems (tiis) 5(4):19
This page was created on April 23, 2019.