Supplementary Web-page for Manuscript:

A multi-objective formulation of maximal covering location problem with customers' preferences: exploring Pareto optimality-based solutions

Soumen Atta1, Priya Ranjan Sinha Mahapatra2, Anirban Mukhopadhyay2

1 Laboratoire des Sciences du Numérique de Nantes (LS2N), UMR 6004, UFR Sciences et Techniques, Université de Nantes, IMT Atlantique, 4 Rue Alfred Kastler, Nantes 44307, France
2Department of Computer Science and Engineering, University of Kalyani, Kalyani-741235, West Bengal, India

Email addresses: soumen.atta@univ-nantes.fr;soumen.atta@ls2n.fr;priya@klyuniv.ac.in;anirban@klyuniv.ac.in

 

The instances for the multi-objective maximal covering location problem with customers' preferences (MOMCLPCP) mentioned in this page are generated using the maximal covering location problem (MCLP) [1, 2] instances which are available at http://www.lac.inpe.br/~lorena/instancias.html. We have created 82 MOMCLPCP instances. The size of an instance is determined by the number of customers (n). Each instance of MOMCLPCP consists of distance matrix having size n × n, demand vector of size n × 1, and preference matrix having size n × n. These files are named as follows: distanceMOMCLPCP#.txt, demandMOMCLPCP#.txt, and preferenceMOMCLPCP#.txt, respectively, where # denotes the number of customers.
The obtained solutions for each of these 82 instances, along with their visualization, can be seen by clicking on the individual "Show Result" button in the following table.


Cite as: Soumen Atta, Priya Ranjan Sinha Mahapatra and Anirban Mukhopadhyay (2021). A multi-objective formulation of maximal covering location problem with customers’ preferences: Exploring Pareto optimality-based solutions. Expert Systems With Applications, Elsevier, Article 115830.


Click here to download all the instances as single zip file.

n k s NSGA-II MOHSA
324 1 800 Show Result Show Result
324 2 800 Show Result Show Result
324 3 800 Show Result Show Result
324 4 800 Show Result Show Result
324 5 800 Show Result Show Result
324 1 1200 Show Result Show Result
324 2 1200 Show Result Show Result
324 3 1200 Show Result Show Result
324 1 1600 Show Result Show Result
324 2 1600 Show Result Show Result
402 1 800 Show Result Show Result
402 2 800 Show Result Show Result
402 3 800 Show Result Show Result
402 4 800 Show Result Show Result
402 5 800 Show Result Show Result
402 6 800 Show Result Show Result
402 1 1200 Show Result Show Result
402 2 1200 Show Result Show Result
402 3 1200 Show Result Show Result
402 1 1600 Show Result Show Result
402 2 1600 Show Result Show Result
500 1 800 Show Result Show Result
500 2 800 Show Result Show Result
500 3 800 Show Result Show Result
500 4 800 Show Result Show Result
500 5 800 Show Result Show Result
500 6 800 Show Result Show Result
500 7 800 Show Result Show Result
500 8 800 Show Result Show Result
500 1 1200 Show Result Show Result
500 2 1200 Show Result Show Result
500 3 1200 Show Result Show Result
500 4 1200 Show Result Show Result
500 1 1600 Show Result Show Result
500 2 1600 Show Result Show Result
500 3 1600 Show Result Show Result
708 1 800 Show Result Show Result
708 2 800 Show Result Show Result
708 3 800 Show Result Show Result
708 4 800 Show Result Show Result
708 5 800 Show Result Show Result
708 6 800 Show Result Show Result
708 7 800 Show Result Show Result
708 8 800 Show Result Show Result
708 9 800 Show Result Show Result
708 10 800 Show Result Show Result
708 11 800 Show Result Show Result
708 1 1200 Show Result Show Result
708 2 1200 Show Result Show Result
708 3 1200 Show Result Show Result
708 4 1200 Show Result Show Result
708 5 1200 Show Result Show Result
708 6 1200 Show Result Show Result
708 1 1600 Show Result Show Result
708 2 1600 Show Result Show Result
708 3 1600 Show Result Show Result
708 4 1600 Show Result Show Result
818 1 800 Show Result Show Result
818 2 800 Show Result Show Result
818 3 800 Show Result Show Result
818 4 800 Show Result Show Result
818 5 800 Show Result Show Result
818 6 800 Show Result Show Result
818 7 800 Show Result Show Result
818 8 800 Show Result Show Result
818 9 800 Show Result Show Result
818 10 800 Show Result Show Result
818 11 800 Show Result Show Result
818 12 800 Show Result Show Result
818 13 800 Show Result Show Result
818 1 1200 Show Result Show Result
818 2 1200 Show Result Show Result
818 3 1200 Show Result Show Result
818 4 1200 Show Result Show Result
818 5 1200 Show Result Show Result
818 6 1200 Show Result Show Result
818 7 1200 Show Result Show Result
818 1 1600 Show Result Show Result
818 2 1600 Show Result Show Result
818 3 1600 Show Result Show Result
818 4 1600 Show Result Show Result
818 5 1600 Show Result Show Result

References:
[1] Lorena, L.A., Pereira, M.A.: A Lagrangean/Surrogate Heuristic for the Maximal Covering Location Problem Using Hillman's Edition. International Journal of Industrial Engineering 9, 57–67 (2002)
[2] Atta, S., Mahapatra, P.R.S., Mukhopadhyay, A.: Solving maximal covering location problem using genetic algorithm with local refinement. Soft Computing 22(12), 3891–3906 (2018)

This page is maintained by Dr. Soumen Atta, PhD.
This page was created on December 25, 2019.